02.日志系统:一条SQL更新语句是如何执行的?

redo log(重做日志)

作用:

确保事务的持久性。防止在发生故障的时间点,尚有脏页未写入磁盘,在重启mysql服务的时候,根据redo log进行重做,从而达到事务的持久性这一特性。

内容:

物理格式的日志,记录的是物理数据页面的修改的信息,其redo log是顺序写入redo log file的物理文件中去的。

什么时候产生:

事务开始之后就产生redo log,redo log的落盘并不是随着事务的提交才写入的,而是在事务的执行过程中,便开始写入redo log文件中。

什么时候释放:

当对应事务的脏页写入到磁盘之后,redo log的使命也就完成了,重做日志占用的空间就可以重用(被覆盖)。

为什么会需要redo log?

如果每一次的更新操作都需要写进磁盘,然后磁盘也要找到对应的那条记录,然后再更新,整个过程IO成本、查找成本都很高,可以理解成随机IO是非常消耗性能的行为。所以需要Write Ahead Logging(WAL),先写日志再在空闲的时候写磁盘,redo log是顺序写,所以会更快。

redo log是固定大小的,比如可以配置为一组4个文件,每个文件的大小是1GB,那么这块“粉板”总共就可以记录4GB的操作。从头开始写,写到末尾就又回到开头循环写。

有了redo log,InnoDB就可以保证即使数据库发生异常重启,之前提交的记录都不会丢失,这个能力称为crash-safe。

什么时候开始写盘

重做日志是在事务开始之后逐步写入重做日志文件,而不一定是事务提交才写入重做日志缓存,原因就是,重做日志有一个缓存区Innodb_log_buffer,Innodb_log_buffer的默认大小为8M(这里设置的16M),Innodb存储引擎先将重做日志写入innodb_log_buffer中。通过以下三种方式将innodb日志缓冲区的日志刷新到磁盘

  • Master Thread 每秒一次执行刷新Innodb_log_buffer到重做日志文件。
  • 每个事务提交时会将重做日志刷新到重做日志文件。
  • 当重做日志缓存可用空间少于一半时,重做日志缓存被刷新到重做日志文件

binlog(归档日志)

为什么会有binlog?

因为最开始MySQL里并没有InnoDB引擎。MySQL自带的引擎是MyISAM,但是MyISAM没有crash-safe的能力,binlog日志只能用于归档。而InnoDB是另一个公司以插件形式引入MySQL的,既然只依靠binlog是没有crash-safe能力的,所以InnoDB使用另外一套日志系统— — 也就是redo log来实现crash-safe能力。

二者区别

  1. redo log是InnoDB引擎特有的;binlog是MySQL的Server层实现的,所有引擎都可以使用。
  2. redo log是物理日志,记录的是“在某个数据页上做了什么修改”;binlog是逻辑日志,记录的是这个语句的原始逻辑,比如“给ID=2这一行的c字段加1 ”。
  3. redo log是循环写的,空间固定会用完;binlog是可以追加写入的。“追加写”是指binlog文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。

执行过程:

  1. 执行器先找引擎取ID=2这一行。ID是主键,引擎直接用树搜索找到这一行。如果ID=2这一行所在的数据页本来就在内存中,就直接返回给执行器;否则,需要先从磁盘读入内存,然后再返回。
  2. 执行器拿到引擎给的行数据,把这个值加上1,比如原来是N,现在就是N+1,得到新的一行数据,再调用引擎接口写入这行新数据。
  3. 引擎将这行新数据更新到内存中,同时将这个更新操作记录到redo log里面,此时redo log处于prepare状态。然后告知执行器执行完成了,随时可以提交事务。
  4. 执行器生成这个操作的binlog,并把binlog写入磁盘。
  5. 执行器调用引擎的提交事务接口,引擎把刚刚写入的redo log改成提交(commit)状态,更新完成。

将redo log的写入拆成了两个步骤:prepare和commit,这就是"两阶段提交"。

为什么需要两阶段提交?

让这两个状态保持逻辑上的一致。

小结

redo log用于保证crash-safe能力。innodb_flush_log_at_trx_commit这个参数设置成1的时候,表示每次事务的redo log都直接持久化到磁盘。这个参数我建议你设置成1,这样可以保证MySQL异常重启之后数据不丢失。
sync_binlog这个参数设置成1的时候,表示每次事务的binlog都持久化到磁盘。这个参数我也建议你设置成1,这样可以保证MySQL异常重启之后binlog不丢失。

03.事务隔离:为什么你改了我还看不见?

SQL标准的事务隔离级别包括:读未提交(read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(serializable )。

  • 读未提交是指,一个事务还没提交时,它做的变更就能被别的事务看到。
  • 读提交是指,一个事务提交之后,它做的变更才会被其他事务看到。
  • 可重复读是指,一个事务执行过程中看到的数据,总是跟这个事务在启动时看到的数据是一致的。当然在可重复读隔离级别下,未提交变更对其他事务也是不可见的。
  • 串行化,顾名思义是对于同一行记录,“写”会加“写锁”,“读”会加“读锁”。当出现读写锁冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行。

读未提交会产生【脏读】,为了解决脏读引入了读提交,但会产生【不可重复读】,于是引入了可重复读,但是会产生【幻读】,为了解决幻读,又引入了串行化,以上问题都可以避免但是效率很低。

幻读:侧重【行数量】发生了变化,定义:当某个事务在读取某个范围的记录的时候,另外一个事务又在该范围插入了新的记录,当前事务再次读取这个范围的记录,会产生幻行(Phantom Data)。

不可重复读:侧重 【某一行数据】发生了变化。定义:当某个事务在读取某个范围的记录的时候,另外一个事务修改了其中某条记录,当前事务再次读取这个范围的记录,会得不一样的结果。

04.深入浅出索引(上)

哈希表这种结构适用于只有等值查询的场景

有序数组在等值查询和范围查询场景中的性能就都非常优秀,只适用于静态存储引擎,对于插入删除不友好

二叉搜索树,查找较快,但树的高度影响磁盘IO,速度变慢

N叉树由于在读写上的性能优点,以及适配磁盘的访问模式被广泛应用在数据库引擎中。由此引申

B树与B+树区别

  • B+树中间节点不保存数据,所以单一节点(磁盘页)能容纳更多节点元素,使得查询的IO次数更少,而B树每一个节点都存储数据
  • B+树所有的查询都要查找到叶子节点,查询性能是稳定的,而B树,每个节点都可以查找到数据,所以不稳定。
  • B+所有的叶子节点形成了一个双向链表,更加便于范围查找。

InnoDB中B+树高度一般为1-3层,它就能满足千万级的数据存储。

InnoDB 的索引模型

在InnoDB中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。

主键索引的叶子节点存的是整行数据。在InnoDB里,主键索引也被称为聚簇索引(clustered index)。

非主键索引的叶子节点内容是主键的值。在InnoDB里,非主键索引也被称为二级索引(secondary index)。

什么叫回表?

假设ID是主键,k是二级索引,如下查询:

如果语句是select * from T where ID=500,即主键查询方式,则只需要搜索ID这棵B+树;
如果语句是select * from T where k=5,即普通索引查询方式,则需要先搜索k索引树,得到ID的值为500,再到ID索引树搜索一次。这个过程称为回表。

总结:先查二级索引再查聚簇索引的过程叫回表。

为什么主键一般要自增?

自增主键的插入数据模式,符合索引递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。即不会产生“页分裂”。另外主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。

05.深入浅出索引(下)

覆盖索引

在一个查询里,索引的列满足我们的查询需求不需要回表,我们称之为覆盖索引。

优点

覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用
的性能优化手段。

最左前缀原则

索引项是按照索引定义里面出现的字段顺序排序的。比如创建了A,B,C联合索引,实际上可以认为是创建了A,AB,ABC三个索引。只要满足最左前缀,就可以利用索引来加速检索。这个最左前缀可以是联合索引的最左N个字段,也可以是字符串索引的最左M个字符。例如常问的like %aa% 是不会使用索引,不满足最左匹配。

索引下推

索引下推(INDEX CONDITION PUSHDOWN,简称 ICP)是 MySQL 5.6 发布后针对扫描二级索引的一项优化改进。总的来说是通过把索引过滤条件下推到存储引擎,来减少 MySQL 存储引擎访问基表的次数以及 MySQL 服务层访问存储引擎的次数。ICP 适用于 MYISAM 和 INNODB。

可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。

06.全局锁和表锁 :给表加个字段怎么有这么多阻碍?

根据加锁的范围,MySQL里面的锁大致可以分成全局锁、表级锁和行锁三类。

全局锁

对整个数据库实例加锁

Flush tables with read lock 

当你需要让整个库处于只读状态的时候,可以使用这个命令,之后其他线程的以下语句会被阻塞:数据更新语句(数据的增删改)、数据定义语句(包括建表、修改表结构等)和更新类事务的提交语句。

使用场景:

全局锁的典型使用场景是,做全库逻辑备份

为什么不使用set global readonly=true?

  • 在有些系统中,readonly的值会被用来做其他逻辑,比如用来判断一个库是主库还是备库。因此,修改global变量的方式影响面更大,我不建议你使用。
  • 在异常处理机制上有差异。如果执行FTWRL命令之后由于客户端发生异常断开,那么MySQL会自动释放这个全局锁,整个库回到可以正常更新的状态。而将整个库设置为readonly之后,如果客户端发生异常,则数据库就会一直保持readonly状态,这样会导致整个库长时间处于不可写状态,风险较高。

增删改数据(DML),修改表结构的操作(DDL)

表级锁

MySQL里面表级别的锁有两种:一种是表锁,一种是元数据锁(meta data lock,MDL)。

表锁的语法是 lock tables … read/write。与FTWRL类似,可以用unlock tables主动释放锁,也可以在客户端断开的时候自动释放。需要注意,lock tables语法除了会限制别的线程的读写外,也限定了本线程接下来的操作对象。

如果在某个线程A中执行lock tables t1 read, t2 write; 这个语句,则其他线程写t1、读写t2的语句都会被阻塞。同时,线程A在执行unlock tables之前,也只能执行读t1、读写t2的操作。连写t1都不允许,自然也不能访问其他表。

MDL不需要显式使用,在访问一个表的时候会被自动加上。MDL的作用是,保证读写的正确性。你可以想象一下,如果一个查询正在遍历一个表中的数据,而执行期间另一个线程对这个表结构做变更,删了一列,那么查询线程拿到的结果跟表结构对不上,肯定是不行的。

因此,在MySQL 5.5版本中引入了MDL,当对一个表做增删改查操作的时候,加MDL读锁;当
要对表做结构变更操作的时候,加MDL写锁。

  • 读锁之间不互斥,因此你可以有多个线程同时对一张表增删改查。
  • 读写锁之间、写锁之间是互斥的,用来保证变更表结构操作的安全性。因此,如果有两个线程要同时给一个表加字段,其中一个要等另一个执行完才能开始执行。

如何安全地给小表加字段?

  • 首先我们要解决长事务,事务不提交,就会一直占着MDL锁。在MySQL的information_schema库的 innodb_trx 表中,你可以查到当前执行中的事务。如果你要做DDL变更的表刚好有长事务在执行,要考虑先暂停DDL,或者kill掉这个长事务。
  • 如果你要变更的表是一个热点表,虽然数据量不大,但是上面的请求很频繁,而你不得不加个字段,你该怎么做呢?这时候kill可能未必管用,因为新的请求马上就来了。比较理想的机制是,在alter table语句里面设定等待时间,如果在这个指定的等待时间里面能够拿到MDL写锁最好,拿不到也不要阻塞后面的业务语句,先放弃。之后开发人员或者DBA再通过重试命令重复这个过程

07.行锁功过:怎么减少行锁对性能的影响?

两阶段锁

事务A事务B
begin;update t set k=k+1 where id=1;update t set k=k+1 where id=2;
begin;update t set k=k+2 where id=1;
commit

事务B的update语句会被阻塞,直到事务A执行commit之后,事务B才能继续执行。

在InnoDB事务中,行锁是在需要的时候才加上的,但并不是不需要了就立刻释放,而是要等到事务结束时才释放。这个就是两阶段锁协议。

对业务帮助

如果你的事务中需要锁多个行,要把最可能造成锁冲突、最可能影响并发度的锁尽量往后放。

死锁和死锁检测

死锁的必要条件

  1. 互斥条件:一个资源每次只能被一个进程使用。
  2. 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
  3. 不剥夺条件:进程已获得的资源,在末使用完之前,不能强行剥夺。
  4. 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。

出现死锁解决策略

  • 直接进入等待,直到超时。这个超时时间可以通过参数innodb_lock_wait_timeout来设置。默认值是50s。
  • 发起死锁检测,发现死锁后,主动回滚死锁链条中的某一个事务,让其他事务得以继续执行。将参数innodb_deadlock_detect设置为on,表示开启这个逻辑。

一般情况下都采用主动死锁检测。当然它也是有额外负担的,热点行更新可能导致CPU利用率很高,但是每秒却执行不了几个事务。

08.事务到底是隔离的还是不隔离的?

两个“视图”的概念

  • 一个是view。它是一个用查询语句定义的虚拟表,在调用的时候执行查询语句并生成结果。创建视图的语法是create view … ,而它的查询方法与表一样。
  • 另一个是InnoDB在实现MVCC时用到的一致性读视图,即consistent read view,用于支持RC(Read Committed,读提交)和RR(Repeatable Read,可重复读)隔离级别的实现。

“快照”在MVCC里是怎么工作的?

在可重复读隔离级别下,事务在启动的时候就“拍了个快照”。

InnoDB里面每个事务有一个唯一的事务ID,叫作transaction id。它是在事务开始的时候向InnoDB的事务系统申请的,是按申请顺序严格递增的。

而每行数据也都是有多个版本的。每次事务更新数据的时候,都会生成一个新的数据版本,并且把transaction id赋值给这个数据版本的事务ID,记为row trx_id。同时,旧的数据版本要保留,并且在新的数据版本中,能够有信息可以直接拿到它。也就是说,数据表中的一行记录,其实可能有多个版本(row),每个版本有自己的row trx_id。

按照可重复读的定义,一个事务启动的时候,能够看到所有已经提交的事务结果。但是之后,这个事务执行期间,其他事务的更新对它不可见。

因此,一个事务只需要在启动的时候声明说,“以我启动的时刻为准,如果一个数据版本是在我启动之前生成的,就认;如果是我启动以后才生成的,我就不认,我必须要找到它的上一个版本”。当然,如果“上一个版本”也不可见,那就得继续往前找。还有,如果是这个事务自己更新的数据,它自己还是要认的。

在实现上, InnoDB为每个事务构造了一个数组,用来保存这个事务启动瞬间,当前正在“活跃”的所有事务ID。“活跃”指的就是,启动了但还没提交。

数组里面事务ID的最小值记为低水位,当前系统里面已经创建过的事务ID的最大值加1记为高水位。

这个视图数组和高水位,就组成了当前事务的一致性视图(read-view)。

已提交事务  |    未提交事务集合  |    未开始事务
         低水位    当前事务   高水位

这样,对于当前事务的启动瞬间来说,一个数据版本的row trx_id,有以下几种可能:

  1. 如果落在前面部分,表示这个版本是已提交的事务或者是当前事务自己生成的,这个数据是可见的;
  2. 如果落在后面部分,表示这个版本是由将来启动的事务生成的,是肯定不可见的;
  3. 如果落在中间部分,那就包括两种情况
  4. 若 row trx_id在数组中,表示这个版本是由还没提交的事务生成的,不可见;
  5. 若 row trx_id不在数组中,表示这个版本是已经提交了的事务生成的,可见。

一个数据版本,对于一个事务视图来说,除了自己的更新总是可见以外,有三种情况:

  1. 版本未提交,不可见;
  2. 版本已提交,但是是在视图创建后提交的,不可见;
  3. 版本已提交,而且是在视图创建前提交的,可见。

更新数据都是先读后写的,而这个读,只能读当前的值,称为“当前读”(current read)。

除了update语句外,select语句如果加锁,也是当前读。

mysql> select k from t where id=1 lock in share mode;//读锁(S锁,共享锁)
mysql> select k from t where id=1 for update;//写锁(X锁,排他锁)

事务的可重复读的能力是怎么实现的?

可重复读的核心就是一致性读(consistent read);而事务更新数据的时候,只能用当前读。如果当前的记录的行锁被其他事务占用的话,就需要进入锁等待。

而读提交的逻辑和可重复读的逻辑类似,它们最主要的区别是:

  • 在可重复读隔离级别下,只需要在事务开始的时候创建一致性视图,之后事务里的其他查询都共用这个一致性视图;
    在读提交隔离级别下,每一个语句执行前都会重新算出一个新的视图。

回滚日志(undo log)

作用

保存了事务发生之前的数据的一个版本,可以用于回滚,同时可以提供多版本并发控制下的读(MVCC),也即非锁定读

内容

逻辑格式的日志,在执行undo的时候,仅仅是将数据从逻辑上恢复至事务之前的状态,而不是从物理页面上操作实现的,这一点是不同于redo log的。

什么时候产生

事务开始之前,将当前是的版本生成undo log,undo 也会产生 redo 来保证undo log的可靠性

什么时候释放

当事务提交之后,undo log并不能立马被删除,而是放入待清理的链表,由purge线程判断是否由其他事务在使用undo段中表的上一个事务之前的版本信息,决定是否可以清理undo log的日志空间。

09.普通索引和唯一索引,应该怎么选择?

查询过程

假设,执行查询的语句是 select id from T where k=5。这个查询语句在索引树上查找的过程,先是通过B+树从树根开始,按层搜索到叶子节点,也就是图中右下角的这个数据页,然后可以认为数据页内部通过二分法来定位记录。

  • 对于普通索引来说,查找到满足条件的第一个记录(5,500)后,需要查找下一个记录,直到碰到第一个不满足k=5条件的记录。
  • 对于唯一索引来说,由于索引定义了唯一性,查找到第一个满足条件的记录后,就会停止继续检索。

二者性能几乎没啥差异。

更新过程

change buffer

当需要更新一个数据页时,如果数据页在内存中就直接更新,而如果这个数据页还没有在内存中的话,在不影响数据一致性的前提下,InooDB会将这些更新操作缓存在change buffer中,这样就不需要从磁盘中读入这个数据页了。在下次查询需要访问这个数据页的时候,将数据页读入内存,然后执行change buffer中与这个页有关的操作。通过这种方式就能保证这个数据逻辑的正确性。

将change buffer中的操作应用到原数据页,得到最新结果的过程称为merge。除了访问这个数据页会触发merge外,系统有后台线程会定期merge。在数据库正常关闭(shutdown)的过程中,也会执行merge操作。

如果能够将更新操作先记录在change buffer,减少读磁盘,语句的执行速度会得到明显的提升。而且,数据读入内存是需要占用buffer pool的,所以这种方式还能够避免占用内存,提高内存利用率。

什么条件下可以使用change buffer呢?

对于唯一索引来说,所有的更新操作都要先判断这个操作是否违反唯一性约束。比如,要插入(4,400)这个记录,就要先判断现在表中是否已经存在k=4的记录,而这必须要将数据页读入内存才能判断。如果都已经读入到内存了,那直接更新内存会更快,就没必要使用change buffer了。

因此,唯一索引的更新就不能使用change buffer,实际上也只有普通索引可以使用

change buffer用的是buffer pool里的内存,因此不能无限增大。change buffer的大小,可以通过参数innodb_change_buffer_max_size来动态设置。这个参数设置为50的时候,表示change buffer的大小最多只能占用buffer pool的50%。

change buffer的使用场景

对于写多读少的业务来说,页面在写完以后马上被访问到的概率比较小,此时change buffer的使用效果最好。假设一个业务的更新模式是写入之后马上会做查询,那么即使满足了条件,将更新先记录在change buffer,但之后由于马上要访问这个数据页,会立即触发merge过程。这样随机访问IO的次数不会减少,反而增加了change buffer的维护代价。

索引选择和实践

这两类索引在查询能力上是没差别的,主要考虑的是对更新性能的影响。尽量选择普通索引。如果所有的更新后面,都马上伴随着对这个记录的查询,那么你应该关闭change buffer

change buffer 和 redo log

redo log 主要节省的是随机写磁盘的IO消耗(转成顺序写),而change buffer主要节省的则是随机读磁盘的IO消耗。

merge的执行流程

  1. 从磁盘读入数据页到内存(老版本的数据页);
  2. 从change buffer里找出这个数据页的change buffer 记录(可能有多个),依次应用,得到新
    版数据页;
  3. 写redo log。这个redo log包含了数据的变更和change buffer的变更。

10.MySQL 为什么有时候会选错索引?

选择索引是优化器的工作。优化器选择索引的目的,是找到一个最优的执行方案,并用最小的代价去执行语句。在数据库里面,扫描行数是影响执行代价的因素之一。扫描的行数越少,意味着访问磁盘数据的次数越少,消耗的CPU资源越少。扫描行数并不是唯一的判断标准,优化器还会结合是否使用临时表、是否排序等因素进行综合判断。

扫描行数是怎么判断的?

MySQL在真正开始执行语句之前,并不能精确地知道满足这个条件的记录有多少条,而只能根据统计信息来估算记录数。

这个统计信息就是索引的“区分度”。显然,一个索引上不同的值越多,这个索引的区分度就越好。而一个索引上不同的值的个数,我们称之为“基数”(cardinality)。也就是说,这个基数越大,索引的区分度越好。

MySQL是怎样得到索引的基数的呢?

采样统计的时候,InnoDB默认会选择N个数据页,统计这些页面上的不同值,得到一个平均值,然后乘以这个索引的页面数,就得到了这个索引的基数。

而数据表是会持续更新的,索引统计信息也不会固定不变。所以,当变更的数据行数超过1/M的时候,会自动触发重新做一次索引统计。在MySQL中,有两种存储索引统计的方式,可以通过设置参数innodb_stats_persistent的值来选择:

  • 设置为on的时候,表示统计信息会持久化存储。这时,默认的N是20,M是10。
  • 设置为off的时候,表示统计信息只存储在内存中。这时,默认的N是8,M是16。

由于是采样统计,所以不管N是20还是8,这个基数都是不准确的

索引选择异常和处理

  • 采用force index强行选择一个索引
  • 考虑修改语句,引导MySQL使用我们期望的索引
  • 新建一个更合适的索引,来提供给优化器做选择,或删掉误用的索引。